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1 Overview

The laws of quantum mechanics describe a universe in which objects can exist, evolve, and interact in
ways entirely unlike the classical world around us. The mathematics describing this behavior is clear, yet its
consequences continue to surprise us, despite over a century of research and experiment. My research focuses
on understanding quantum mechanics operationally: on asking what is and is not possible in a quantum
mechanical world. Answering these questions can lead to important practical applications, as we push the
limits of our ability to engineer and control quantum systems to obtain real-world benefits. At the same
time, these answers can also lead to important advances in theory, as they sharpen our intuition for the
deeply counter-intuitive world of quantum mechanics and the mathematics that surround it.

Much of my research involves considering restricted physical scenarios and then asking what behavior
quantum mechanics allows in them. Here the focus is on information, rather than specific physical phenom-
ena. In what ways can the outcomes of measurements made on physically distinct, but entangled, quantum
systems be correlated? How can classical data be processed by simple quantum circuits? And what can
be learned from a few copies of a quantum state? Restricting quantum mechanics in this way often re-
veals sophisticated mathematical structure which can, in turn, be used to reveal new truths about quantum
mechanics.

Another recurring theme in my research involves investigations of simplified models or classical analogues
of some aspect of quantum mechanics. How much of quantum behavior can be described by these models?
And what behaviors do these models fail to capture? A key example here comes from low-degree non-
commutative sum of squares (ncSoS) approximations, which store partial information about quantum states
via their low order moments.1 Other examples come from my work concerning quantum circuits and learning
from quantum states, which can be compared to classical circuits and learning from samples drawn from
classical probability distributions, respectively.

By definition, the realm of quantum mechanics is one in which there is a gap between what is actually
possible and what our classical intuition suggests should be true. My research aims to bridge that gap
wherever possible.

2 Past Work

In the following I discuss some details of my past research in a way that I hope will be accessible to non-
experts in the field. This discussion is organized broadly by themes, some of which encompass many papers
and some only a few. For reasons of brevity some papers are not discussed at all: notable omissions include
projects concerning probabilistic graph colouring [9] and extremal combinatorics [36], which I worked on
before beginning my PhD. A complete list of my publications can be found in my CV.

2.1 Nonlocal Games and Quantum Correlations

Consider a collection of non-communicating observers who are sent messages, then subsequently make mea-
surements on a shared quantum state. It has been known since the work of Bell that the measurement
outcomes obtained by these observers can be correlated with the messages they are sent in ways that are
impossible to reproduce classically. But exactly what correlations are possible? Recent series of break-
throughs [27, 11, 21, 17] have shown that fully describing this set of correlations in general is an incredibly
(or technically, impossibly) complex task, and that the exact set of correlations that can be produced depends
critically on the underlying structure of the Hilbert space in which the quantum state lives. In particular, [17]
showed that measurements made on a state living in an infinite dimensional Hilbert space could obtain cor-
relations not contained in the closure of the set of correlations achievable by measurements made on finite
dimensional Hilbert spaces. Through a chain of previous established results [22] this result also disproved

1These approximations are discussed in more detail in Section 2.3.
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Connes’ longstanding embedding conjecture, giving a striking example of how advances in our understanding
of quantum mechanics can also lead to advances in the surrounding mathematics.

An important tool involved in the study of these correlations are nonlocal games: situations in which
the observers (in this context often called players) chose a shared state and measurement with the goal of
maximizing a linear functional defined on the space of correlations. Bell’s original test can be phrased as a
two-player nonlocal game called an XOR game. In these games all measurements are restricted to binary
outcomes and the linear functional depends only on the parity of the measurement outcomes. In a now-classic
1987 result [28], Tsirelson showed that optimal measurement strategies for all two-player XOR games could
be computed in polynomial time, and that these only required measurements made on finite dimensional
Hilbert spaces. Despite this, the complexity of determining optimal strategies for XOR games with 3 or
more players remains open, as does the closely related question of what resources (i.e. what dimension of
Hilbert space) are required to play these games optimally.2

In [32] coauthors and I gave an algebraic characterization of when an XOR game with any number of
players could be played perfectly, meaning that there existed a measurement strategy for the game achieving
the maximum possible value on the associated linear functional. Via a theorem of alternatives, we then
showed that perfect strategies for these games only required that the players share a simple finite dimensional
state called a GHZ state. These results also showed that it was possible to decide in polynomial time
if a given game had a perfect strategy, provided that game came from a subclass of XOR games called
symmetric XOR games. In the same paper we also used first moment method techniques to analyze randomly
generated XOR games and found a threshold above which these games were unlikely to be perfect, along
with exponential lower bounds on the time complexity required to discover this fact using a semi-definite
programming hierarchy known as the non-commutative sum of squares hierarchy.3

In [6] Bill Helton and I gave a careful analysis of 3 player XOR games using the criterion developed
in [32] and showed that it was possible to determine if any 3 player XOR game had a perfect strategy in
polynomial time. This proof was centered around an involved algebraic argument – essentially showing that
a specific family of instances of the subgroup membership problem on a right-angled Coxeter group were
efficiently solvable. Notably, this argument was developed “from scratch” for this problem and, to the best
of my knowledge, does not match any other standard techniques for showing solvabilitity of the subgroup
membership problem. In a follow-up work [34] Bill and I, along with a USCD graduate student, used the
previous results to investigate 3XOR games numerically and gave evidence for a sharp phase transition
between an almost-always-perfect and almost-always-imperfect phase for these games.

XOR games are not the only nonlocal games with an algebraic characterization of when they are perfect.
A different algebraic criterion characterizes the existence of perfect strategies for closely related family
of games called Binary Constrain System (BCS) games [10], and yet another criterion applies to a rich
class of nonlocal games called synchronous games [15]. These criterion appear distinct, as do the methods
used to prove them. In [33] coauthors and I showed all these criteria could be viewed as consequences
of a particular non-commutative Nullstellensatz. This result adds another link between non-commutative
algebraic geometry and nonlocal games and further clarifies the algebraic machinery underlying previous
work on nonlocal games.

2.2 Shallow Quantum Circuits

Near-term quantum computers are likely to be small, noisy machines incapable of maintaining coherence for
long periods of time. Yet even these simple machines are expected to have super-classical abilities [4]. The
study of short depth circuits asks what computations can be performed by circuits with depth (i.e. number of
layers of computation) much shorter than their input length. This question has practical significance, as these
short depth circuits are exactly the circuits suitable for implementation on near term machines. And it offers
theoretical advances: as will be discussed in a moment, studying short depth circuits allows for unconditional
separations between the power of quantum circuits and their classical counterparts – separations which are
far beyond our theoretical capabilities otherwise.

In a recent breakthrough result [7], Bravyi Gosset and Koenig compared the ability of constant depth
quantum and classical circuits when solving search problems: that is problems for which the goal is to map

2Though some bounds are known on the dimension needed to achieve a certain advantage over classical strategies, see [25, 8].
3This hierarchy will be discussed in more detail in Section 2.3.
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an input bitstring to a “valid” classical output. For this class of problems they showed an unconditional
separation between the ability of constant depth quantum circuits and constant depth classical circuits
without fanout gates. Equivalently, in the language of complexity theory, they showed an unconditional
separation between the classes QNC0 and NC0 with respect to search problems. In [35] coauthors and I
strengthened this result to give an unconditional separation between constant depth quantum circuits and
classical circuits with fanout gates (but without parity gates). In the language of complexity theory, this
showed a separation between the classes QNC0 and AC0. The proof of this result required bringing together
a variety of ideas, including previous work concerning the power of shallow quantum circuits with fanout
gates [16], ideas from measurement based computation [26], and the proof of a novel switching lemma.

In [37] I worked with Natalie Parham, a masters student at the University of Waterloo (now a graduate
student at Columbia), to prove an unconditional separation between quantum and classical circuits for a
different type of computational task. We described a distribution which could be sampled from approximately
by quantum circuits, but which could not be approximately sampled from by any constant depth, fanout
free, classical circuit given access to (a bounded number of) random bits.4 In the language of complexity
theory, we showed an unconditional sampling separation between the complexity classes QNC0 and NC0.
While this separation only holds in the fanout-free setting, sampling separations are in general harder to
show than search separations. In fact, this result gave the first unconditional quantum-classical sampling
separation known for shallow circuits. Proving this result required adapting some techniques used to prove
hardness of sampling in the classical setting [29] and carefully engineering a quantum circuit using a variety
of old [16] and new tricks.

2.3 The Non-Commutative Sum of Squares Hierarchy and Hamiltonian Com-
plexity

An important tool in much of my research has been a hierarchy of semidefinite programs known as the
non-commutative sum of squares (or ncSoS) hierarchy. When applied to quantum mechanics, the key idea of
this hierarchy is to observe that quantum states can be viewed as positive linear maps acting on polynomials
formed from some set of observables, and then approximate these states by maps that are restricted to be
positive only on low degree polynomials in the observables.5 This gives an outer approximation the the set
of quantum states, which the Helton-McCollough Positivstellensatz [14] then says converges as the degree
of the polynomials considered goes to infinity. In the nonlocal game setting, these observables represent
the measurements that can be made by players and the ncSoS hierarchy (also called the NPA hierarchy
when applied to nonlocal games) gives an upper bound on the correlations achievable with (commuting)
measurements made on an infinite dimensional state.

In the local Hamiltonian problem a large matrix (the Hamiltonian) is described via a sum of local
observables, and one is asked to compute its minimum eigenvalue. Usually these local observables are
described as tensor products of Pauli matrices. The ncSoS algorithm described in the previous paragraph
can then be applied in this setting with the Pauli matrices taking the role of the set of observables. The
resulting hierarchy of semidefinite programs, called the Quantum Lasserre hierarchy, has proven to be an
important tool in our study of the local Hamiltonian problem. Of particular interest is the application of this
hierarchy to a family of local Hamiltonians called Quantum Max Cut Hamiltonians [12, 23]. As suggested by
the name, computing the minimum eigenvalue of these Hamiltionans can be viewed as a quantum analog of
the well-studied (classical) max cut problem, and the use of the quantum Lasserre hierarchy to approximate
this value can be viewed as a quantum analogue of the (classical) Lasserre hierarchy used in the famous
Goemans-Williamson approximation algorithm.

In [31] coauthors and I gave an alternate semidefinite programming hierarchy for approximating the min-
imum eigenvalue of Quantum Max Cut Hamiltonians based on two qubit swap operators instead of Pauli
matrices. This hierarchy was built on the ncSoS framework, but working out the details of its implementation
required understanding the representation theory of the symmetric group, in particular Schur-Weyl duality.
This new hierarchy showed advantages over the “standard” Quantum Lasserre Hierarchy in numerical exper-
iments and also allowed for new theoretical possibilities – most notably the idea of solving or approximating
the Quantum Max Cut problem inside certain irreps of the symmetric group. In the same work, we also

4Here “approximately” means up to some constant error in total variational distance.
5Here by positive I mean that the map maps positive elements (i.e. sums of squares) to positive numbers.
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built on the representation theory of the symmetric group to give a new proof and generalization of the
Lieb-Mattis technique [20] for exactly solving certain Quantum Max Cut Hamiltonians.

2.4 Learning about Quantum States

One way to understand quantum mechanics is as a generalization of classical probability theory. From this
viewpoint, quantum states take on the role of probability distributions and quantum systems in a given state
take the role of samples drawn from that distribution. As in the classical theory, these quantum systems can
be measured to learn information about the underlying state. However, unlike in the classical case, these
measurements may disturb the quantum system on which they act.

How much can these effects matter? A key result in quantum mechanics known as the gentle measurement
lemma gives a partial answer: stating that the disturbance any quantum measurement causes to a system is
upper bounded in terms of the amount of information that measurement could provide.6 Thus, measurements
can only cause significant damage to a quantum system when their outcomes tell you something novel about
the underlying state, a principle which has been referred to as the information-disturbance tradeoff. But
this tradeoff only applies to a single measurement. When multiple measurements are made in sequence on
a state no such bound applies and some sequences of measurements are known to exhibit an “anti-Xeno
effect” in which they can cause large damage to a quantum system while revealing no information about the
underlying state.

In [30] I, along with then an early graduate student at the University of Waterloo (and now a graduate
student at Columbia) named John Bostanci, showed a version of the gentle measurement lemma could
be recovered in the multi-measurement setting provided the order of measurements was randomized. We
then introduced and analyzed a variety of new procedures based on this “random gentle measurement
lemma” for learning partial information about a quantum state given access to a few quantum systems
in that state. These results proved the correctness of a “quantum OR” procedure originally proposed
by Scott Aaronson [1], answering an open question from the paper that found an error in Aaronson’s
original analysis [13]. Additionally, they resulted in a new procedure for the problem of shadow tomography,
in which the goal is to learn the average accepting probability of a list of two outcome measurements
given sample access to some unknown state [2, 3]. Our new procedure required (asymptotically) the same
number of samples as the previous best known protocol [5], but required less technical machinery. Notably,
the techniques used in all these proofs were elementary with the key arguments following from a careful
combination of the Cauchy-Schwarz Lemma and a monotonicity argument.

3 Goals for Future Research

I will end this statement by discussing a few questions which I find fascinating. These aren’t all questions
I expect to be able to completely answer in a single paper – or even ever – but they are questions that I
expect will at least partially guide my research going forwards.

• When is there a super-polynomial difference between the sample complexities required
for classical and quantum learning? It is possible to extend the parallel between quantum states
and classical probability distributions first discussed in Section 2.4. In this extended analogy, as be-
fore, quantum states take the role of probability distributions, and systems take the role of samples.
Additionally, two outcome measurements take the role of classical true/false events that can be eval-
uated on samples from the distribution. We can then compare the number of samples of the classical
probability distribution required to learn some feature of the events to the number of samples of the
quantum state required to learn some feature of the measurements.

Often, these two sample complexities are polynomially related. This is true when the goal is just to
determine if there is a single likely event (Quantum OR) or when the goal is to fully characterize the
quantum state (Quantum State Tomography). But for the well-studied shadow tomography problem
(discussed in Section 2.4) the best known quantum algorithm requires a number of samples that

6Formally, the trace distance between the state of the initial and post measurement system is bounded by the square root
of the probability of seeing an unlikely outcome.
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scales with the dimension of the Hilbert space the quantum state lives in, while the classical learning
algorithms do not. Why this discrepancy? Is this just a failure of our ability to come up with good
quantum algorithms? If so, what are we missing? If not, what is the difference between shadow
tomography and the previously discussed problems? I find these questions conceptually fascinating.

• How (else) can we round from low-degree SoS approximations to quantum states? A key
step in the celebrated Goemans-Williamson algorithm is a “rounding” step, which takes a low degree
sum of squares representation of a probability distribution to an actual probability distribution on
boolean variables. Analogues of this procedure have been studied in the case of the quantum Lasserre
hierarchy and Quantum Max Cut. When the goal is to round to a product (i.e. unentangled) state
an optimal rounding procedure is known [24] and it bears some resemblance to the original Goemans-
Williamson procedure. However, when the goal is to round to an entangled state the situation is
much more opaque. Current state of the art techniques are based on tuning parameters in short depth
circuits [19, 18]. While the analysis of these algorithms is impressive, rounding algorithms of this form
involve some seemingly “ad hoc” choice of parameterized circuit to optimize. Can we improve on
these? One fascinating challenge to doing so comes from the fact that general quantum states are not
efficiently describable. Thus, optimal rounding algorithms may be necessarily non-constructive (instead
just guaranteeing the existence of some hard-to-describe quantum state) in the quantum setting.

• How can measurement effects in shallow quantum circuits be used for practical benefits?
A key ingredient in the shallow circuit separations discussed in Section 2.2 is a phenomenon where
measurements on spatially separated qubits, initially independent, become correlated after conditioning
on the outcome of measurements on qubits connecting them. This can also be understood as a special
case of quantum teleportation which, in some cases, allows shallow quantum circuits to approximate
the behavior of much deeper circuits. We have a few examples of how this result can be used to
prove complexity-theoretic separations. But what about more practical ones? To give one particular
example, I’m very interested in how intermediate measurements and feed-forward circuits may be used
to reduce gate count in quantum compiling algorithms.

• What lower bounds can we prove on the depth required to compile unitaries? In the study
of classical circuits, no explicit lower bounds are known beyond log-depth. Put differently, it remains
possible that log depth classical circuits may be able to perform all known polynomial time algorithms,
although this is commonly believed to be very unlikely. While a straightforward counting argument
shows many functions cannot be implemented on log depth circuits, no explicit example is known.
Can we hope to prove anything stronger in the quantum case? At first the situation may seem even
more hopeless, but there are some unique quantum phenomena, such as teleportation and no-cloning,
which may make proving lower bounds easier. Can we exploit these? While this is a highly speculative
research direction, it is one I hope to look into in the future.
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